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Goal of this series of talks.

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics

2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: colimits

3 Representation theory.

4 MRS factorisation: A local system of coordinates for Hausdorff groups and
fine tuning between analysis and algebra.

5 This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimers.

Disclaimer I.– The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.

Disclaimer II.– Sometimes, absolute rigour is not followeda. In its place,
from time to time, we will seek to give the reader an intuitive feel for what
the concepts of category theory are and how they relate to our ongoing
research within CIP, CAP and CCRT.

aAll is assumed to be subsequently clarified on request though.

Disclaimer III.– The reader will find repetitions and reprises from the
preceding CCRT[n], they correspond to some points which were skipped or
uncompletely treated during preceding seminars.
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Bits and pieces of representation theory
and how bialgebras arise

Wikipedia says

Representation theory is a branch of mathematics that studies abstract
algebraic structures by representing their elements as linear
transformations of vector spaces .../...
The success of representation theory has led to numerous generalizations.
One of the most general is in category theory.

As our track is based on Combinatorial Physics and
Experimental/Computational Mathematics, we will have a practical
approach of the three main points of view

Algebraic

Geometric

Combinatorial

Categorical
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Matters

1 Representation theory (or theories)
1 Geometric point of view
2 Combinatorial point of view (Ram and Barcelo manifesto)
3 Categorical point of view

2 From groups to algebras
Here is a bit of rep. theory of the symmetric group, deformations,
idempotents

3 Irreducible and indecomposable modules
4 Characters, central functions and shifts.

Here are (some of) Lascoux and Schützenberger’s results
5 Reductibility and invariant inner products

Here stands Joseph’s result
6 Commutative characters

Here are time-ordered exponentials, iterated integrals, evolution equations
and Minh’s results

7 Lie groups Cartan theorem
Here is BTT
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CCRT[27] Colimits, equalizers and presentations.

Plan of this talk.
1 Review of what has been seen as regards “the art of universal

problems”
1 wrt a functor
2 wrt a diagram
3 for α-applications

2 equalizers and presentations

3 (D) and (LF) monoids

4 application to S ′ = MS and Picard.

5 Concluding remarks
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With respect to a functor

1 Let Cleft , Cright be two categories and F : Cright → Cleft a (covariant)
functor between them

Cleft Cright

U V

Free(U)

F

f

jU f̂

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U ∈ Cleft , of a pair (jU ,Free(U)) (with jU ∈ Hom(U,F [Free(U)]),
Free(U) ∈ Cright) such that, for all f ∈ Hom(U,F [V ]) it exists a unique
f̂ ∈ Hom(Free(U),V ) with F [f̂ ] ◦ jU = f . Elements in Hom(U,F [V ]) are called
heteromorphisms their set is noted HetF (U,V ).(
∀f ∈ Hom(U,F [V ])

)(
∃! f̂ ∈ Hom(Free(U),V )

)(
F (f̂ ) ◦ jU = f

)
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Colimit of a commutative diagram.

Covers: disjoint unions, direct sums, coproducts, pushouts and direct
limits (inductive limits).
All here is stated within the same category C.

A B

C L ω

D E α

α

β

Φ

∃

σ
1
n

∃
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Coproducts: A two-point arrowless diagram.

X
Z

Y

X
∐

Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X
∐

Y ).

(
∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )

)(
∃! h(f ; g) ∈ Hom(X

∐
Y ,Z )

)(
h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g

)
(1)
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Coproducts: Sets

1 All here is stated within the same category Set.

X
Z

Y

X t Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X t Y ).(
∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )

)(
∃! h(f ; g) ∈ Hom(X t Y ,Z )

)(
h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g

)
(2)
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Coproducts: Modules

2 All here is stated within the same category k-Mod.

X
Z

Y

X ⊕ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊕ Y ) here h(f ; g) = f ⊕ g .(
∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )

)(
∃! h(f ; g) ∈ Hom(X ⊕ Y ,Z )

)(
h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g

)
(3)
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Coproducts: k-CAAU

3 All here is stated within the same category k-CAAU.

X
Z

Y

X ⊗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊗ Y ) here h(f ; g) = f ⊗ g .(
∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )

)(
∃! h(f ; g) ∈ Hom(X ⊗ Y ,Z )

)(
h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g

)
(4)
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Coproducts: Augmented k-AAU

4 All here is stated within the same category of Augmented k-AAU.

X
Z

Y

X ∗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ∗ Y ) here h(f ; g) = f ∗ g .(
∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )

)(
∃! h(f ; g) ∈ Hom(X ∗ Y ,Z )

)(
h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g

)
(5)
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α-applications: tensor products.

5 Here Cleft = k-Mod× k-Mod, Cright = k-Mod.

A× B C

A⊗ k B

f

jU f̂

Figure: A solution of the universal problem of tensor products: A,B,C are
k-modules, f is k-bilinear (k is a commutative ring and f̂ is unique )

6 If you look at the axioms of α-applications [4] Ch IV §3.1 (universal sets and
mappings). You see that the α-applications are kind of left module w.r.t.
the endomorphisms of Cright (QMII p 283), this left ideal is principal (AU′I p

284) and there is unicity of the factorisation (AU′′I p 284).

7 As regards the case of tensor products, the class of α-applications is that of
k-bilinear mappings from A× B → C .
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What is a presentation ?

5 Let us first begin with Mon and Grp.

6 Our first example is Dn the dihedral group Dn

〈 r , s ; rn = s2 = (sr)2 = 1〉Grp (6)

(see next slide for n = 5)

7 Indeed a presention is always: (1) an alphabet (of generators), (2) a
lst (of relations, or relators), (3) a category (as index).

8 The Moore-Coxeter presentation of the symmetric group Sn. It reads

〈 (ti )1≤i≤n−1 ; ti ti+1ti = ti+1ti ti+1 (i ≤ n − 2),

ti tj = tj ti (|i − j | ≥ 2)

t2
i = 1 (i ≤ n − 1) 〉Grp
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1

2

3 4

5

1

2

3

4

5
Figure: For D5 (group of order 10). Coxeter presenttion is with s1 (symmetry wrt
the line passing through node 5) and s2 (symmetry wrt the line passing through
node 2) and relator [s2

i = 1 ; (s1s2)5 = 1].
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Categorical setting for a presentation

9 The presented structure is a quotient of the free one Free(X ) (with
the same set of relators): X ∗ for monoids (Mon), F (X ) for groups
(Grp), Liek[X ] for k-Lie algebras (k-Lie), k〈X 〉 for k-AAU.

10 The list of relators can be put in the form (us = vs)s∈T where
us , vs ∈ Free(X ).

11 For example, the k-Drinfeld-Kohno Lie algebra of order n, DKn is
presented by tij = tji and

〈 (tij)1≤i 6=j≤n−1 ; [tij , tkl ] = [tij , tik + tjk ] = 0 |{i , j , k , l}| = 4 〉 k-Lie
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Splitting the DK Lie algebra (as a module).

12 Let Ai be the free Lie algebra generated by {tij | i < j ≤ n − 1} i.e.

An−2 is generated by {t(n−2),(n−1)}
An−3 is generated by {t(n−3),(n−2), t(n−3),(n−1)} (7)

It can be shown that

Ln ' mod k A1 ⊕ A2 ⊕ · · · ⊕ An−1 (8)

See [15] (Ai is an ideal of the sum Ai ⊕ · · · ⊕ An−1, to check).

13 Algorithmically, this gives a pathway to concrete computation of
bases (Lyndon, Hall, finely hompogeneous and then MRS).
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Categorical setting for a presentation/2

14 For the considered categories, we have a forgetful functor
F : C → Set, and the following diagram

T
u•−−⇒
v•

Free(X ) (9)

15 The presented algebra and its arrow Free(X )
j
A is then a

solution of the following universal problem

Set C

T Free(X ) A

P

F

u•

v•

m

j
∃ ! m̂

Figure: The arrow m is a morphism within the category C which equalizes
the relators i.e. F (m ◦ u•) = F (m ◦ v•). The arrow m is a coequalizer.
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Free partially commutative structures

16 There is a set of structures (free partially commutative, see [13]).

17 Given a reflexive graph ∆X ⊂ θ ⊂ X (X is the alphabet)

M(X , θ) = 〈X ; (xy = yx)(x ,y)∈θ〉Mon (10)

where θ ⊂ X × X is a reflexive undirected graph.

18 These structures are compatible with Lazard’s elimmination and MRS
factorization. This can proved using k[M(X , θ)] = U(Liek(X , θ)).

19 A unipotent Magnus group with a nice Log-Exp correspondence can
be defined more generally for every locally finite monoid. Is there a
general MRS factorization ?

20 In the sound cases, what is the combinatorics of different orders ?
(Not increasing or decreasing Lyndon words.) Are they useful ?

21 / 35



Examples

21 The bicyclic monoid

〈 a, b ; ba = 1 〉Mon (11)

has a normal form (apbq)p,q∈N and then is not a group (otherwise, we
would have ab = 1 which is not the case).

22 Monoids
〈 X ; (ui = vi )i∈I 〉Mon

with |ui | = |vi | (i ∈ I ) are N-graded

23 If, moreover, for all x ∈ X , we have |ui |x = |vi |x (Schützenberger
called them “commutation monoids”), then they are (LF). See below.

24 The Braid monoid (same presentation than the Braid group, but
within the category Mon) is graded but NOT finely homogeneous.
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Monoids and series (D) and (LF) monoids of monomials.

25 We recall here the discussion of [10] about monoids and series.

26 A set E being given, kE is the set of all functions f ∈ E → k,
1 supp(f ) = {x ∈ E | f (x) 6= 0}
2 k(E) = {f ∈ kE | #(supp(f )) <∞}
3 〈S |P〉 =

∑
x∈E S(x)P(x), S ∈ kE , P ∈ k(E)

27 Starting with a monoid (M, ., 1M) and considering
k(M) = k[M] ⊂ k[[M]] = kM , we see that in order to extend the
product formula

P.Q :=
∑
w∈M

∑
u.v=w

〈P|u〉〈Q|v〉w (12)

it is sufficient (and necessary in general position) that the map
? : M ×M → M has finite fibersa (condition [D], see [2] III §2.10).

aRecall that a map f : X → Y between two sets X and Y has finite fibers if
and only if for each y ∈ Y , the preimage f −1(y) is finite.
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(D) and (LF) monoids/2

28 If M satisfies condition [D], we can extend the formula (12) to
arbitrary P,Q ∈ kM (as opposed to merely P,Q ∈ k[M]). In this
case, the k-algebra

(
kM , ., 1M

)
is called the total algebra of M, a and

its product is the Cauchy product between series.

29 For every S ∈ kM , the family (〈S |m〉m)m∈M is summableb. and its
sum is precisely S =

∑
m∈M〈S |m〉m.

aSee also https://en.wikipedia.org/wiki/Total_algebra.
bWe say that a family (fi )i∈I of elements of kM is summable if for any given

m ∈ M, all but finitely many i ∈ I satisfy 〈fi |m〉 = 0. Such a summable family
will always have a well-defined infinite sum f =

∑
m∈M

∑
i∈I 〈fi |m〉m ∈ kM ,

whence the name “summable”.
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(D) and (LF) monoids/3

30 For example, the monoid M = {xk}k∈Z, a multiplicative copy of Z
does not satisfy condition [D].

31 Then, k[M] = k[x , x−1] is the algebra of Laurent polynomials. It
admits no total algebra.

32 For this monoid, we have to impose a constraint of the support (i.e.
admit only supports like [a,+∞[Z. The resulting algebra, k[x , x−1]] is
that of Laurent series.
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(D) and (LF) monoids/4

33 For every series S ∈ k[[M]], we set S+ :=
∑

m 6=1〈S |m〉m.
In order for the family ((S+)n)n≥0 to be summable, it is sufficient that the
iterated multiplication map µ∗ : (M+)∗ → M defined by

µ∗[m1, . . . ,mn] = m1 · · ·mn (product within M) (13)

have finite fibers (where we have written the word [m1, . . . ,mn] ∈ (M+)∗ as
a list to avoid confusion).a

34 In this case the characteristic series of M (i.e. M =
∑

m∈M m = 1 + M+) is
invertible and its inverse is called the Möbius function µ : M → Z. It is
such that

M−1 = 1−M+ + M+
2 −M+

3 − · · · =
∑
m∈M

µ(m).m (14)

aFurthermore, this condition is also necessary (if S+ is generic) if k = Z.
These monoids are called “locally finite” in [17].
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Examples and remarks

35 Every finite monoid (and in particular finite groups) satisfies condition (D).

36 Among finite groups, only the trivial group is locally finite.

37 Many combinatorial monoids are such that M+ = Mr {1M} is stable by
products.

38 For example X ∗, X ∗ ⊗ X ∗ and N(X ) (the free abelian monoid)

39 In the case of point 37, S 7→ 〈S |1M〉 is a character of k[[M]] (with values in
k).

40 In the case of point 38, these monoids are locally finite, each M−1 is
polynomial and given by, respectively

1− X ; 1−
∑
x∈X

(x ⊗ 1 + 1⊗ x) +
∑

x,y∈X

x ⊗ y ;
∏
x∈X

(1− x) (15)

where N(X ) is written multiplicatively {Xα}α∈N(X ) .
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Thank you for your attention.
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algebras, Siberian Mathematical Journal, 58, No. 1, pp. 176–182, 2017

31 / 35



[16] V. Drinfel’d, On quasitriangular quasi-hopf algebra and a group
closely connected with Gal(Q̄/Q), Leningrad Math. J., 4, 829-860,
1991.

[17] S. Eilenberg, Automata, languages and machines, vol A. Acad. Press,
New-York, 1974.

[18] M.E. Hoffman, Quasi-shuffle algebras and applications, arXiv preprint
arXiv:1805.12464, 2018

[19] H.J. Susmann, A product expansion for Chen Series, in Theory and
Applications of Nonlinear Control Systems, C.I. Byrns and Lindquist
(eds). 323-335, 1986
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